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Anomalous diffusion and Hall effect on comb lattices
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In this paper we study the effects of a magnetic field on the discrete time random walk of a classical charged
particle moving on a comb lattice. We develop an analytical technique to study the Lorentz force effects on the
asymptotic diffusion laws. This approach also allows the description of the combined action of an electric and
a magnetic field~Hall effect!. The generalization to other comblike branched structures is discussed.
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I. INTRODUCTION

Over the last decade a great deal of interest has b
focused on the investigation of diffusion in disordered n
works @1,2#. Diffusion on these structures does not exhi
the behavior typical of ordered crystalline lattices and it
often described by dramatically different laws. This is t
case of a great variety of real systems such as percola
clusters, polymers, glasses, and fractals. Moreover, if the
fusing particles are electrically charged, the presence of
ternal electric and magnetic fields can give rise to furt
anomalous phenomena@3–6#.

The theoretical approach to the problem of diffusion
disordered structures is based on the study of random w
on nontranslationally invariant networks. The effects of
electric field are reproduced in the so-called biased rand
walk problem, where the probability of jumping in the dire
tion of the field is greater than the probability of jumping
the opposite direction@7#. When a magnetic field is presen
the Lorentz force must be taken into account. The simp
way to do this is to assume the random walker velocity to
a vector, having the direction of the last step of the wal
and unitary length. According to this definition, the effect
the Lorentz force consists in changing the jumping probab
ties in a point depending on the way followed by the walk
to reach that particular point, i.e., the problem of rand
walks in presence of a magnetic field can be mapped
that of random walks withshort time memory.

In this paper we develop an analytical technique to stu
diffusion of charged particles in disordered systems us
biased random walks with short time memory~one-step
memory!. We apply our results to the particular case of t
two-dimensional comb lattice in the presence of an elec
field E and a magnetic fieldB ~Fig. 1!. This structure, in
absence of external fields, is characterized by anomalous
fusion along the backbone since the average square disp
ment grows according to the relation^x2&;t1/2 @1#. When an
electric field is applied in the direction of the backbone, t
walker is pushed by the field and the average displacem
becomeŝ x&;t1/2. The combined application of an electr
and a magnetic field, pushing the walker in opposite dir
tions, gives rise to different situations depending on the re
tive strength of the two fields. We discuss the case of a m
netic field orthogonal to the comb, showing that the aver
1063-651X/2003/67~1!/016116~7!/$20.00 67 0161
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displacement still grows aŝx&;t1/2 with the particle follow-
ing the direction of the electric field ifE.B/4 and the oppo-
site direction otherwise.

The paper is organized as follows. In Sec. II we presen
review of the results concerning the diffusion on the com
lattices in the presence of an electric field@1#, in Secs. III and
IV we develop our technique of random walks with memo
to study the effects of a magnetic field. Finally, in Sec. V w
describe the combined effect of an electric and a magn
field on a two-dimensional comb lattice.

II. DIFFUSION IN THE PRESENCE OF AN ELECTRIC
FIELD

Let us briefly recall the results concerning diffusion on
comb lattice in the presence of an electric field applied in
direction of the backbone@1#. The comb lattice in Fig. 1 is a
discrete structure consisting of a linear chain~backbone!
whose points are connected with half-linear chains~teeth!.
We shall label each point of the backbone using a coordin
x, xPZ, and the points of the tooth linked with sitex, with
yx , yxPN,yx.0. Each point of the backbone is also co
nected to itself by a loop, representing a staying probabi

In absence of electric and magnetic fields, a rand
walker moving on the comb can jump from a generic poini
to one of itszi nearest neighbors with equal probability 1/zi .
The staying probabilities, represented in Fig. 1 by the loo
change the coordination numberzi from zi53 to zi54. If

FIG. 1. The two-dimensional comb lattice in the presence of
electric field E and a magnetic fieldB. Loops represent waiting
probabilities.
©2003 The American Physical Society16-1
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we apply an electric field of strengthE, uEu,1/4, the prob-
ability of jumping to the right becomes 1/41E, the probabil-
ity of jumping to the left is 1/42E, while both the jumping
probability on the teeth and the staying probability rem
unchanged. Notice that we putuEu,1/4 to prevent the jump-
ing probabilities from assuming negative values. Let us s
with the caseE.0. In this first case the walker is driven t
the right ~R! by the electric field. Diffusion along the back
bone can be studied by evaluating the probabilityP(O,x;t)
of being on sitex, x.0 after t steps, for a walker starting a
t50 from a fixed originO on the backbone. The averag
displacement on the right of the originO after t steps is given
by

^x&R5

(
x50

`

xP~O,x;t !

(
x50

`

P~O,x;t !

. ~1!

We recall that, as usual, the average displacement aft
time t is defined by

^x&5

(
x52`

`

xP~O,x;t !

(
x52`

`

P~O,x;t !

.

In turn, P(O,x;t) can be written as

P~O,x;t !5 (
m50

t

F~O,x;m!P~x,x;t2m!, ~2!

whereF(O,x;m) is the probability of being for the first time
in point x after m steps for a walker starting at timem50
from point O, andP(x,x;t2m) is the probability of return-
ing to x after t2m steps. Thanks to the translational inva
ance of the lattice along the direction of the backbone we
introduce the notationP(O;t)[P(x,x;t), which holds for
each pointx of the backbone. The expression ofF(O,x;m)
is given by

F~O,x;m!5S 1

4
1ED x

(
m050

`

••• (
mx2150

`

3HL~O;m0!•••HL~O;mx21!

3dm,m01•••mx212x , ~3!

whereHL(O;mx)[HL(x,x;mx) represents the probability o
returning to the starting point on the backbone aftermx steps
for a walker moving on a left half comb, i.e., on the structu
that is obtained from the comb of Fig. 1 after suppressing
the points~and relative links! that occupy positions on th
right of point x.

The previous relations can be written in terms of gene
ing functions, using Tauberian theorems@8# to extract the
asymptotic behavior for long timest of the probability func-
01611
rt

a

n

ll

t-

tions from the corresponding generating functions. Us
generating functions, Eqs.~2! and ~3! become

P̃~O,x;l!5F̃~O,x;l!P̃~O;l! ~4!

and

F̃~O,x;l!5F S 1

4
1EDlGx

H̃L~O;l!x. ~5!

The whole problem is now reduced to the determination
H̃L(O;l) and P̃(O,x;l). Using the relations obtained in
Ref. @9# for the caseE50, we finally obtain forEÞ0

P̃~O;l!

5
4

~A1026l24l214l2E216A12l222lA12l2!1/2
.

~6!

The asymptotic behavior of a probability function is dete
mined by the singularities of the corresponding generat
function calculated in the variablel512e in the limit e
→0. In particular, if thek-order derivative of a generatin
function P̃( i , j ;12e) diverges as e2s(s.0), the
asymptotic behavior ofP( i , j ;t) as t→` will be given by

P~ i , j ;t !;ts212k, t→`, ~7!

i andj being two generic points of the lattice. Let us study
detail the asymptotic behavior ofP̃(O;l) for EÞ0. It is
known @10# that random walks are recursive~i.e., the walker
returns to its initial position on the lattice with probabilit
equal to 1! when

P~O;t !;t2d̃/2, t→`, ~8!

and the spectral dimensiond̃ @11# is less or equal than 2. I
d̃.2, the random walk is transient and the probability f
the walker to reach the starting point is less than 1. Now
E50, we know thatP̃(O;12e) diverges ase21/4 @9#. This
implies that

P~O;t !E50;t23/4, t→`, ~9!

and the spectral dimension of the comb isd̃53/2 ,2. This
result implies that unbiased random walks on the comb
recursive. On the contrary, ifEÞ0,P̃(O,12e) does not di-
verge ase→0. To find a diverging quantity, we have t
calculate the first-order derivative and we obtain

P~O;t !E50;t23/2, t→`, ~10!

so we haved̃53.2 which represents a dramatic chan
from a regime of recursive random walks to a regime
transient. The electric field changes the spectral dimens
causing a real transition in the system. Let us now cons
^x&R and its generating function:
6-2
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^x̃~l!&R5

(
x50

`

xP̃~x;l!

(
x50

`

P̃~x;l!

5

(
x50

`

xP̃~O;l!H̃L~O;l!xF S 1

4
1EDlGx

(
x50

`

P̃~O;l!H̃L~O;l!xF S 1

4
1EDlGx

. ~11!

These geometrical series can be easily summed, giving

^x̃~l!&5

P̃~O;l!

S 1

4
1EDlH̃L~O;l!

F12S 1

4
1EDlH̃L~O;l!G2

P̃~O;l!
1

12S 1

4
1EDlH̃L~O;l!

; ~12!

in the limit l→12e we have, forEÞ0,

P̃~O;l!→ 2

E 1O~Ae! ~13!

and

S 1

4
1EDlH̃L~O;l!→11O~Ae!. ~14!

This implies that the denominator of Eq.~12! diverges as
1/Ae while the numerator diverges as 1/e. The asymptotic
behavior is then given by

^x&R;4A2pEt1/2, t→`. ~15!

The average displacement to the left of pointO, ^x&L , is
obtained by substitutingE with 2E in Eq. ~11!. By straight-
forward calculation we find out that in this case,

^x&L;2
2~114E!

E~314E!
, t→`. ~16!

For the diffusion along the direction of the teeth, since all
teeth are equivalent, the problem can be mapped into tha
a particle diffusing on a semilinear chain having a stay
probability equal to 3/4 in the origin. This comes from th
fact that each time the walker reaches one of the join
points between tooth and backbone has a probability 1/4
remaining on this same site, a probability 1/42E of reaching
the joining point on the left and a probability 1/41E of
reaching the joining point on the right. Since these thr
point are equivalent from the point of view of the diffusio
along the teeth, we can consider the sum of these three p
abilities as a staying probability equal to 3/4. The avera
01611
e
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displacement on the half-linear chain is known to grow
t1/2 @12#, and it is not affected by the presence of a stay
probability in the origin.

III. RANDOM WALKS IN A MAGNETIC FIELD

Let us now turn on a magnetic field of strengthB directed
along thez axis ~the comb is in thex-y plane! and let us
consider the effects of the Lorenz force on the walker.
define the random walker velocity in a generic pointi as a
vector having the direction of the last step of the walker, i
the step the walker took to reach that point. When the wal
moves along one of the teeth, fieldB has no consequence
since its only effect consists in trying to force the walker o
of the structure, but this is forbidden. Only when the walk
takes the final step from a tooth to the backbone, the fielB
modifies the jumping probabilities: pushing the charged p
ticle to the right or to the left on the backbone depending
the sign ofB. The Lorentz force always comes into pla
when the walker moves along the backbone pushing the
ticle in the direction of the the teeth or towards the loop
Finally, the Lorentz force is null when the walker reaches
backbone coming from a loop, since in this case the velo
is supposed to be zero. A pointx on the backbone can b
reached in four different ways: from the left (→), from the
right (←), from the tooth connected with pointx (↓), and
after a waiting time on sitex itself (↑). Once reached pointx,
the walker experiences the Lorentz force while taking
next step. The Lorentz force will change the jumping pro
abilities depending on the way the walker reached poinx.
Let p1(a), p2(a), p3(a), p4(a), a5→,←,↑,↓, be the
probabilities of jumping right, jumping left, jumping on th
tooth, and stay relative to a point on the backbone, resp
tively. We obtain the following jumping probabilities:

a p1 p2 p3 p4

↑ 1
4 1E 1

4 2E 1
4

1
4

↓ 1
4 1E2B 1

4 2E1B 1
4

1
4

→ 1
4 1E 1

4 2E 1
4 2B 1

4 1B
← 1

4 1E 1
4 2E 1

4 1B 1
4 2B

~17!

The jumping rules of the random walk are deeply modifi
by the magnetic field since the choice of the direction
follow is now influenced by the memory of the last step.
the following, every probability function will be written as

Pb
a~ t !, a,b5→,←,↑,↓, ~18!

where b tells in which way the walker took the last ste
~corresponding to timet) and a represents the memory o
the walker as it starts to move att50.

IV. DIFFUSION IN A MAGNETIC FIELD

In presence of a magnetic field, the diffusion of a rando
walker along the backbone of the comb can be still evalua
6-3
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using Eq.~1!, but now memory effects must be taken in
account. The probability that a random walker starting fo
the origin O at t50 with an a-type memory arrives at a
distancex.0 on the backbone aftert steps is given by

Pa~O,x;t !5(
b

Pb
a~O,x;t !. ~19!
cia

g
on

n
g

01611
Moreover,x being on the right of the starting point, we ca
write

Pa~O,x;t !5(
m

F→
a ~O,x;m!P→~O;t2m! ~20!

and
F→
a ~O,x;m!5 (

m050

`

••• (
mx2150

`

(
b

HLb
a ~O;m0!p1~b!(

b
HLb

→ ~O;m1!p1~b!•••(
b

HLb
→ ~O;mx21!p1~b!dm,m01•••mx212x ,

~21!
re-
whereHLb
a (O;t) refers to the left half comb. Let us define

QL
→~l![(

b
H̃Lb

→ ~O,l!p1~b!, ~22!

so that fora5→,

^ x̃~l!&5

P̃→~O;l!(
x

xl@QL
→~l!#x

P̃→~O;l!(
x

l@QL
→~l!#x

5

P̃→~O;l!QL
→~l!

@12QL
→~l!#2

P̃→~O;l!

12QL
→~l!

.

~23!

Analogous relations hold fora5←, a5↑, anda5↓. As in
the case of the random walks in an electric field, the cru
point is to know whether the quantityQL

→(l) tends to 1

while l→1, as well as whetherP̃→(O,l) diverges in this
same limit.

Let us start fromHLb
a (O;t), which can be evaluated usin

the translational invariance of the comb along the backb
direction. LetI Lb

a (O;t) be the probability of returning to the
starting point for the first time on a left half comb. We ca
write the following recursion relation for the generatin
functions:

H̃Lb
a ~O;l!5da,b1 Ĩ L↑

a ~O;l!H̃Lb
↑ ~O;l!

1 Ĩ L↓
a ~O;l!H̃Lb

↓ ~O;l!1 Ĩ L→
a ~O;l!H̃Lb

→ ~O;l!.

~24!

Since

Ĩ L↓
a ~O;l!5

l2

2
p3~a!

2

l2 ~12A12l2!, ~25!

we easily obtain the final expression:
l

e

H̃Lb
a ~O;l!5da,b1lp4~a!H̃Lb

↑ ~O;l!

1p3~a!~12A12l2!H̃Lb
↓ ~O;l!

1l2p2~a!(
g

H̃Lg
← ~l!p1~g!H̃Lb

→ ~l!.

~26!

Now we multiply this equation forp1(b) and sum overb to
obtain

QL
a~l!5(

b
da,bp1~b!1lp4~a!QL

↑~l!

1p3~a!~12A12l2!QL
↓~l!

1l2p2~a!QL
←~l!QL

→~l!. ~27!

This equation splits into a system of four equations cor
sponding to the four values ofa. We solve the system to
obtain the values ofQL

↑(l), QL
↓(l), QL

→(l), andQL
←(l). In

particular, in the limitl512e, e→0QL
↓(12e) is given by

QL
↓~12e!5

24B422B21B112~3B11!uBu
24B41B212B11

1O~Ae!.

~28!

The solutions are now different depending onB being greater
or less than zero. ForB,0, we find

QL
↑~12e!5QL

↓~12e!5QL
→~12e!5QL

←~12e!

511O~Ae!, ~29!

while for B.0 we find

QL
↓~12e!5

125B224B4

112B 1B224B4
1O~Ae!, ~30!

QL
↑~12e!5

2B1~11B!QL
↓~12e!

3B11
1O~Ae!, ~31!
6-4
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TABLE I. Combined effect of an electric and a magnetic field.

Direction of Direction of Relative strength ^x&R ^x&L

E B
E.0 B,0 C2(E,B)t1/2 C1(2E,2B)
E,0 B.0 C1(E,B) C2(2E,2B)t1/2

E.B/4 C2(E,B)t1/2 C1(2E,2B)
E.0 B.0

E,B/4 C1(E,B) C2(2E,2B)t1/2

uEu,uBu/4 C2(E,B)t1/2 C1(2E,2B)
E,0 B,0

uEu.uBu/4 C1(E,B) C2(2E,2B)t1/2
is
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by
QL
→~12e!5QL

↑~12e!~11B!2BQL
↓~12e!, ~32!

QL
←~12e!5QL

↑~12e!~12B!1BQL
↓~12e!1O~Ae!.

~33!

This result also implies that theQL
a(l) does not diverge as

l→1. For P→(0,l), one obtains that also this quantity
finite in thel→1 limit. So we conclude that forB.0, the
leading term in the asymptotic expression of the average
placement on the right of pointO has no time dependence

^x&R;C1~E50,B!, t→`, ~34!

while whenB,0 the same quantity grows as

^x&R;C2~E50,B!t1/2, t→`; ~35!

where

C2~E,B!5
A2p~4E2B!

128EB , ~36!

and the explicit calculation ofC2(E,B) is described in the
Appendix. It is easy to show that the left average displa
ment can be extracted from the right one simply by chang
B in 2B. This implies that forB.0,

^x&L;C2~E50,B!t1/2, t→`; ~37!

while for B,0,

^x&L;C1~E50,B!, t→`. ~38!

V. HALL EFFECT ON A COMB

Let us now apply an electric and a magnetic field
gether: this will lead to different behaviors depending on
relative signs ofE andB. If E.0 andB,0, the two fields
add their effects to push the walker to the right, so that

^x&R;C2~E50,B!t1/2, ^x&L;C1~E50,B!, t→`.
~39!

On the contrary, if we putE,0 andB.0, we obtain

^x&R;C1~E50,B!, ^x&L;C2~E50,B!t1/2, t→`.
~40!
01611
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e

The most interesting situation is whenE.0 andB.0, or
whenE,0 andB,0, since in these cases there is a com
tition between the effects of the two fields, i.e., they push
walker towards opposite directions. Following the sam
steps described in the preceding section, we obtain two
ferent expressions forQL

a(l) depending on the sign of th
quantity:

d[~3B1124E!~B24E!, ~41!

which is the square root of theD of the second-order equa
tion we must solve to find the expression ofQL

↓(l) If d
,0,

QL
↑~12e!5QL

↓~12e!5QL
→~12e!5QL

←~12e!

511O~Ae!. ~42!

If d.0, we solve the second-order equation inE and obtain
that for

B
4

,E,
113B

4
, ~43!

we are in the same situation of the cased,0, and theQL
a(l)

are given by Eq.~42!. For

E,
B
4

~ E.
113B

4
, ~44!

all the QL
a(l) do not tend to 1 asl→1. Using these equa

tions together with the relations

1

4
1E2B.0,

1

4
E1B.0,

following from the positivity of the jumping probabilities
we obtain the final results that are summarized in Table
Notice that the average left displacement has been obta
from the previous calculations simply by changing the sig
of E andB. The casesE5B/4 andE5(113B)/4 correspond
to the situationd50 and describe a walker that is pushed
6-5
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E andB towards opposite directions with the same streng
As a consequence, diffusion follows the same rules of
unbiased caseE5B50 with ^x&R and^x&L growing both as
t1/2 and with a resulting mean displacement equal to zero

VI. SUMMARY AND DISCUSSION

The problem of the diffusion of a classical charged p
ticle in a magnetic field has been described by random w
with one-step memory. This is a generalization of the we
known discrete time random walks problem with the ad
tional prescription that the jumping probabilities result to
affected by the direction of the preceding step. In the parti
lar case of the 22d comb lattice, we obtained analyticall
the asymptotic behaviors for diffusion laws along the ba
bone under the simultaneous presence of an electric a
magnetic field~Hall effect!. Notice that these changes a
also a product of the substantial ‘‘asymmetry’’ of the com
i.e., of the fact that the upper half comb has a different str
ture with respect to the lower half. If we consider a com
where the teeth are complete infinite linear chains but co
plete linear chains, no Hall effect can be put into eviden
The technique we developed can be extended to the w
01611
.
e

-
s

-
-

-

-
a

,
-

-
.
le

family of the n-dimensional comb lattices@9# where we find
Hall effect as in the 22d comb lattice case. Moreover, th
study of the effect of a magnetic field using random wa
with memory applies to all the structures where the rand
walk problem can be analytically solved and a proper d
nition of the magnetic field effects is allowed.

APPENDIX

The calculation of the coefficientC1(E,B) follows from
the evaluation of Eq.~23!. Let us define the following func-
tions of E andB:

a~E,B!524B41B212B1118E~2E2B21!, ~A1!

c~E,B!524B425B211124EB216E2. ~A2!

The finite part ofQL
→(l) in the limit l512e, e→0 is

Q~E,B!5
1

a~E,B!
~24B414B32B21118EB216EB2!,

~A3!

while the coefficient ofAe in the expression ofQL
→(12e) is
ting
eL
→~E,B!5Bc~E,B!

a~E,B!
1

c~E,B!

2@a~E,B!#2~B24E!~124E13B!
~2114E2B12B2!~128E216E214B216EB13B228EB2

132E2B212B3264EB3110B4280EB4112B5!. ~A4!

As much as concerns the evaluation ofP̃→(O;l), it can be obtained from the corresponding first time arrival genera
function F̃→(O;l) through the relation

P̃→~O;l!5
1

12F→~O;l!
.

The finite part ofF̃→(O;l) is

F~E,B!5
1

2
1S 1

4
2EDa~2E,2B!

a~E,B!
Q~2E,2B!1S 1

4
1EDa~2E,2B!

a~E,B!
Q~E,B!, ~A5!

and the coefficient ofAe is

f ~E,B!52S 1

4
1BD2S 1

4
2ED eL

←~E,B!1S 1

4
1ED eL

←~2E,2B!, ~A6!

where

eL
←~E,B!52Bc~E,B!

a~E,B!
1

c~E,B!

2@a~E,B!#2~B24E!~124E13B!
~2114E2B22B2!~128E116E214B216EB13B218EB2

232E2B222B322B4280EB4112B5! ~A7!

is the coefficient ofAe in the expression ofQL
←(12e). After using Tauberian theorems the final expression ofC1(E,B) results

to be
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C1~E,B!5

S 1

12 f ~E,B!
1eL

→~E,B! D @12Q~E,B!#212eL
→~E,B!

Q~E,B!

12F~E,B!

@12Q~E,B!#2S 12Q~E,B!

12 f ~E,B!
1

eL
→~E,B!

12F~E,B!
D . ~A8!
. E
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